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ABSTRACT 

This work characterizes defects and phases within Cu2ZnSn(S,Se)4  (CZTS(Se)), an 

earth-abundant material used to make thin film photovoltaic solar cells.  Overall research 

efforts focus on improving the solar cell device efficiency with the hope that it can be 

produced at the terawatt energy scale and circumvent material supply bottlenecks of current 

thin film photovoltaic technology.  In this work, deep defects, composition-dependent 

crystalline disorder and secondary phase formation, and polymorph variation are all 

explored to determine the effects on the CZTS(Se) absorber layer within a solar cell device.  

Chapter 1 introduces how thin film photovoltaics fit into the global energy perspective and 

gives background into the ideal CZTSSe material characteristics, solar cell function, and 

current knowledge about why CZTS(Se) device performance still lags other current thin 

film photovoltaics.  Chapter 2 explains the temperature admittance and deep level transient 

capacitance spectroscopy methods used in Chapter 3.  Chapter 3 reports the observation of 

a deep defect state 590 meV from the conduction band edge with an attractive capture cross 

section of 2 x 10-14 cm-2 behaving as an electron trap within nanoparticle-ink deposited 

CZTSSe.  This is the first report of minority carrier trapping within CZTS(Se).  Chapter 4 

reports the coherent (Cu2SnS3, CZTS) and incoherent (CuxS, SnxSy) phases formed in a 

compositionally-varied coevaporated CZTS film.  Raman spectroscopy experiments show 

Cu/Sn composition-dependent differences within the Cu2SnS3 crystalline structure of films 

deposited at low temperatures and CZTS crystalline disorder in films deposited at higher 

temperatures.  This work demonstrates the deleterious effect of Sn-rich growth on the 
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overall crystalline quality and possible defect concentration within CZTS.  Chapter 5 

reports the results of modeling the effects of varying the polymorph of the absorber layer 

within a CZTS solar cell.  The kesterite and stannite polymorph variation do not 

significantly negatively impact the absorber layer in the bulk, however, the presence of 

kesterite at the interface and stannite in the bulk is shown to have the highest solar cell 

efficiencies.  Chapter 6 summarizes each project and outlines future work. 
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CHAPTER 1 

INTRODUCTION 

Photovoltaics on the Global Energy Scale 

Global energy consumption is projected to increase from 18 terawatts (TW) in 2010 

to 28 TW in 2040 [1].  Although the cumulative global renewable electricity installed 

capacity has grown by 97% from 2000 to 2012 to now account for 27% of worldwide 

electricity generation [2], further growth is required to meet increasing energy demands.  

Increasing energy generation from renewable resources will reduce reliance on finite fossil 

fuels and mitigate the detrimental effects of CO2 release, but these renewable technologies 

must be able to produce on the TW scale in order to make an appreciable difference.  With 

>105 TW incident sunlight on the earth, solar power is promising for large-scale energy 

production.  Sunlight may be harvested through conversion to thermal, chemical, or 

electrical energy.  Currently photovoltaic (PV) power systems, which transfer energy from 

photons to electrons via the photoelectric effect, comprise the large majority of solar power 

installations.  Even though solar power is currently a small 1.8% contribution to worldwide 

electricity generation, solar is the fastest growing sector in renewable electricity generation 

with a 49-fold increase from 2000 to 2012 [2], and shows promise for electricity generation 

on the TW scale. 
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Thin Film Photovoltaics 

Either single or polycrystalline silicon (c-Si) is the semiconductor used as the 

photoactive layer in 90% of all new PV installations.  The other 10% comprises thin film 

technologies using CdTe, CuInxGa1-xSe2 (CIGSe), and amorphous or nanocrystalline Si 

[3].  As the name implies, thin films only use 1-3 µm of semiconductor for sunlight 

absorption, whereas a thicker c-Si wafer will be >100 µm.  Despite the high energy cost to 

produce ≥99.9999% pure Si wafers [4], global solar electricity generation is still dominated 

by this well-developed technology because growth is sustained through continued 

improvements in device design, material quality, and material processing [5].  Even though 

these advances result in higher overall module efficiencies for c-Si (η=22.9% for record 

efficiency of c-Si module vs. η=17.5% for record efficiency of CdTe module [6]),  thin 

film deposition is not only less energetically expensive, but also more versatile.  Thin films 

can be deposited by a variety of methods including coevaporation, sputtering, solution 

deposition, or nanoparticle “ink” to form polycrystalline films with grain sizes on the order 

of a µm.  They can be deposited onto the traditional glass substrate or flexible metal or 

plastic films which enable roll-to-roll processing.  Thin films can also be deposited over 

large areas so an entire module (~1 m2) may be “printed” at once, whereas c-Si-based solar 

cells (~100-400 cm2) are limited by wafer size, and additional soldering is required to 

connect multiple cells to form a module.  

Thin film PV manufacturing and installation advantages as well as recent advances 

in record cell efficiencies of CdTe (η=21.0% [7]) and CIGSe (η=20.8% [8]) technologies 

encourage continued research to overcome the disadvantages of lower module efficiencies 

and inclusion of toxic, rare-earth elements including Cd, Te, In, and Se.  Since the CIGSe 
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and CdTe absorber layers are sequestered between large pieces of glass or plastic, leaching 

is of no concern if the module remains intact, and no appreciable amounts of these toxic 

elements are emitted during PV operation [9].  Even though the toxicity concerns can be 

alleviated by safe manufacturing processes and proper end-of-life module disposal, the 

limited raw material supply is an unresolved concern when considering scale-up of CIGSe 

and CdTe to TW levels of production.   

 

Earth-Abundant CZTS 

Using the 2012 production volumes of mineable ores as a metric for scalability [4], 

it would require 700 years to make 1 TW of CdTe PV modules because of limited Te, and 

it would require 200 years to make 1 TW of CIGSe modules because of limited In.  These 

time frames are huge compared to 1 TW of c-Si PV, which could be made in 3 years.  

(These estimates account for typical thicknesses and densities for each of these materials, 

efficiency η=10%, and typical solar irradiation, but do not account for the additional 

purification of metallurgical grade silicon to higher purity.)  

The alternative earth-abundant material Cu2ZnSnS4 (CZTS) has a very similar 

crystalline structure to CIGSe and may provide the same thin film benefits of this “close 

cousin” while also circumventing toxicity and supply bottleneck issues.  One TW of CZTS 

modules could be made in just under 1 year!  (This is based on similar calculations [4], but 

using η=5%.)  The limiting element in the CZTS case is Sn.  The caveat is the η=8.4% [10] 

CZTS solar cell record device efficiency is significantly lower than η=20.8% [8] for 

CIGSe, and the CZTS device efficiency is difficult to improve without addition of Se [11] 

to the absorber layer.  One TW of Cu2ZnSnSe4 (CZTSSe) modules would require 90 years 

to make at the current limited rate of Se supply (assuming a higher η=10%).  Therefore, 
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understanding and overcoming the hurdles to reach higher Cu2ZnSn(S,Se)4 (CZTS(Se)) 

solar cell device efficiencies is paramount to establishing commercial viability to this 

appealing earth-abundant thin film photovoltaic material.   

 

A Note on Acronyms 

This research explores three types of materials that vary only by chalcogen 

composition:  sulfur-only Cu2ZnSnS4 (CZTS), selenium-only Cu2ZnSnSe4 (CZTSe), or the 

mixed sulfo-selenide Cu2ZnSn (Sx,Se1-x)4 (CZTSSe).  When referring to all three of these 

as a general class, the acronym CZTS(Se) is used. 

 

Photovoltaic Solar Cell Operation 

There are three factors necessary for a photovoltaic solar cell to generate electrical 

work from absorbed light energy.  First, the device must absorb light with enough energy 

so that electrons originally in a ground state bound to atoms in the crystal lattice of the 

semiconductor are promoted to an excited, unbound state in which they become “free 

carriers.”  This promotion of electrons from the highest occupied molecular orbital 

(HOMO), also called the valence band maximum (VBM) of the semiconductor, to the 

lowest unoccupied molecular orbital (LUMO), or conduction band minimum (CBM) 

results in free carriers, which are electrons in the conduction band and holes in the valence 

band.  Second, these light-generated electron-hole pairs must be spatially separated to 

avoid annihilation by recombining.  Once they are separated, they must lastly travel to the 

front and back contacts where they are collected by the external circuit to accomplish 

electrical work.   

Figure 1.1 shows the layers in a typical CZTS(Se) solar cell.  The CZTS(Se) is the 
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active absorber layer where the electron-hole pairs are generated, separated, and then drift 

to the external circuit.  To separate the electron-hole pairs generated within the CZTS(Se) 

absorber layer, the solar cell device contains a p-n junction at the CdS/CZTS(Se) interface 

(Figure 1.1).  The junction formed from intrinsic p-type CZTS(Se) and n-type CdS contains 

both an asymmetric spatial variation in voltage potential as well as an asymmetric energetic 

variation in conduction and valence band offsets, as shown in Figure 1.2.   The potential 

varies within the space charge region (SCR) and drives electrons towards the CdS where 

they will be collected by the front contact.  The holes are driven to the back interface to be 

collected by the back contact.   

 

CZTS(Se) Material Properties 

CZTS belongs to the class of Group I2-II-IV-VI4 quaternary semiconductors.  With 

a mixed sulfide/selenide composition, it is considered pentenary.  CZTS(Se) forms several 

different polymorphs, which are all based on a tetragonal lattice structure.  The most 

energetically favorable crystalline structure is kesterite, with the stannite polymorph 

differing only in cation arrangement and being only 0.2 eV higher in formation energy [12] 

(Figure 1.3). 

The absorption coefficient (>10-4 cm-1) [13] indicates the capability for CZTS(Se) 

to effectively absorb light, and the bandgap enables charge carrier generation, which 

satisfies the first of the three requirements for effective solar energy generation.  The 

CZTS(Se) band gap, which is the energy barrier from a bound to an unbound electron, can 

be tuned from 1.0 eV (CZTSe) to 1.5 eV (CZTS) [14].  This energy range spans the solar 

spectrum and is therefore ideal for sunlight absorption [15].  CZTSSe also has a direct 

bandgap, which is desirable for optoelectronic materials since there is a higher probability 
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an absorbed photon will generate an electron/hole pair because the band to band transition 

conserves crystalline momentum [16].  An indirect semiconductor such as Si requires an 

additional interaction with the crystal to gain the necessary momentum for the band to band 

transition.   

The bandgap of CZTS(Se) indicates a homojunction CZTSSe device with a 

spatially-uniform bandgap could theoretically achieve η~30%, the maximum efficiency 

possible for a single junction solar cell [15].  However, this theoretical prediction, the 

Shockley-Queisser limit, only accounts for losses from radiative recombination of 

electron/hole pairs within the absorber layer and neglects losses from crystalline disorder, 

heterojunction band offsets (i.e., CZTS(Se)/CdS/ZnO), or other device imperfections 

including the formation of secondary phases within the absorber layer. 

 

CZTS(Se) Solar Cell Performance Disparity 

Even though sufficient charge carrier generation and separation may occur within 

CZTSSe, recombination of electron and hole pairs before sufficient separation and 

collection to the external circuit limits the device performance.  For comparison, the close 

cousin material CIGSe has a similar tetragonal crystalline structure and band gap, and the 

device architecture is almost identical to that for CZTS(Se), but the record CZTSSe solar 

cell device efficiency is only 12.6% [17], whereas the 20.8% CIGSe device record 

efficiency [18] is almost double.  A comparison of two solar cells, a 10.1% efficient 

CZTSSe device and a 15.1% efficient CIGSSe device, both deposited by the same 

laboratory with the same techniques, reveals that the CIGSSe device outperforms the 

CZTSSe on every major device characteristic used to define a solar cell’s performance.  

The largest performance disparity between the close cousins is the 15% lower open-circuit 
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voltage (VOC) in CZTSSe [19].  

The VOC, the voltage at zero current, is the maximum voltage available to the 

device.  Because losses in VOC arise from increased reverse saturation current, it can also 

be viewed as a metric of the recombination occurring within the device.  VOC losses within 

CZTSSe devices indicate that defects that lie near the middle of the CZTSSe band gap 

(deep defects) may be acting as recombination centers.  These defects may occur in the 

bulk, interfaces, or grain boundaries of the absorber layer.   

Defects may act as recombination centers and lower the minority carrier lifetime 

and reduce the light-generated current.  Using three different methods, Repins et al. 

measure the minority carrier lifetime of 9.4% efficient CZTSe devices to be 2-3 ns [20].  

The lifetime of high-efficiency CIGSe on the other hand is >100 ns [21].  Even commercial 

CIGSe devices have >30 ns minority carrier lifetimes.  Device modeling studies attribute 

the majority of voltage loss of CZTSe devices to be a result of short minority carrier 

lifetime, however, the VOC of the device model is still higher than that of the actual device.   

This indicates other mechanisms of voltage loss also account for lower CZTSe device 

efficiencies [20].   

Experts studying kesterite and chalcopyrite materials and solar cell devices met in 

January 2013 to identify research goals for kesterite photovoltaics that would expedite 

achieving >18% efficient devices.   To address the primary cause for lagging efficiencies, 

the VOC deficit, meeting participants identified three high-impact research areas:  defect 

characterization and passivation, phase stability and process control, and interface 

optimization [22].  The research in this dissertation addresses defect characterization and 

phase analysis.   
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Secondary Phase Formation in CZTS(Se) 

 The compositional range for thermodynamic stability of the pure CZTS phase is 

only a few mol % wide for Cu, Zn, and Sn variation at temperatures relevant for film 

synthesis (i.e., the 670 K isotherm in [23]), and there is a high likelihood that secondary 

phases including CuxS, SnxSy, CuxSnSy, and ZnS will form during film synthesis.  To 

further complicate phase stability, the quaternary compound also readily decomposes into 

binary Cu2-xS and ZnS as a result of SnS evaporation [24].  The secondary phases and 

defects that result from compositional variation both positively and negatively affect 

CZTSSe devices. 

ZnS(Se) phase presence both lowers the VOC of a device [25] and also blocks charge 

collection due to band structure misalignment [26].  Even though ZnS(Se) phase 

precipitation lowers CZTS(Se) device performance [27], a final Zn-rich, Cu-poor film 

composition yields higher device efficiencies [28].  A postulated benefit to the secondary 

phases ZnS(Se) and Cu2SnS(Se)3 (CTS(Se)), which have similar zinc-blend based 

crystalline structures to CZTS(Se), is grain boundary passivation [29] by reducing strain 

and lowing recombination velocities at the grain interfaces.  Although CTS(Se) may 

positively alter grain boundaries, its lower bandgap (0.8-0.9 eV for CTS and 0.4 eV for 

CTSe) [30] may reduce overall solar cell efficiency.  The flake-like grain structure of SnS 

on the surface of the solar cell will also cause problems with adhesion and cause 

insufficient electrical contact between the morphologically rough CZTS/SnS/CdS layer 

and the ZnO that is typically sputtered on for the transparent conducting oxide [31] (Figure 

1.1).  Chapter 4 presents characterization of secondary phases that are either miscible or 

immiscible within the main CZTS(Se) film and examines their presence relative to film 
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composition.  Composition variation in CZTS(Se) not only affects the secondary phase 

formation, but also affects defect formation and concentration, which controls the doping, 

electrical, and optical behaviors of the absorber layer.   

 

Defects in CZTS(Se) 

The pentenary nature of CZTSSe lends itself to a wide variety of defects including 

vacancy, interstitial, and antisite defects.  Following Kroger-Vink notation, the defects are 

written as MS where M is the species (vacancy, interstitial, or atom), and S is the lattice 

site.  For example, the vacancy on a copper site is written as VCu, and a Sn atom on a Zn 

lattice site is written SnZn.  In most cases herein, the charge of the defect is left off of the 

notation.  The predicted charge transfer levels for defects most likely to form in CZTS and 

CZTSe [12], [22] are shown in Figure 1.4.   

CZTS(Se) is natively p-type due to the high concentration of CuZn and VCu defects 

that act as electron acceptors and are ionized at room temperature.  The concentration of 

these defects are predicted to depend on the Cu/(Zn+Sn) and Zn/Sn ratios or chemical 

potentials of the elements depending on the synthesis method [12].  Defects which lie near 

the band edge have low enough energies to be ionized at room temperature and are called 

shallow states.  This demarcation energy is approximately kBT=25 meV (kB is the 

Boltzmann’s constant and temperature T=300K).  These shallow defects consist of 

electron(s) weakly bound by a Coulomb potential which are localized, but to a rather large 

volume of the crystal (up to thousands of lattice spacings), that can ionize to the extended 

states of the crystal.  Conversely, defects with electrons or holes having ionization energies 

larger than a few kBT, are more strongly localized by the impurity potential [32].  These 

deep states have more deleterious consequences to the solar cell efficiency since they are 
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more likely to trap free carriers for long times and possibly act as recombination centers if 

the opposite polarity carrier is trapped before the first is remitted.  As a general rule, the 

closer a trap lies to midgap, the more likely it is to act as a recombination center, however, 

the capture and emission cross sections also play a role.   

Deeper states within CZTS(Se) have been measured by methods including thermal 

admittance spectroscopy (TAS) [33]–[36], deep level transient spectroscopy (DLTS) [36], 

transient photocapacitance [37], current mode DLTS [38], time-resolved 

photoluminescence [36], deep level capacitance profiling [34], and indirectly by measuring 

the effect on photoluminescence (PL) [31], [39]–[41].  States from 30 meV to >637 meV 

have been attributed to acceptors that range from shallow to deep [31], [33], [34], [36], 

[38], [42], [43], and an optically active defect at ~400 meV has been attributed to a quasi-

donor/acceptor pair [40]. However, to date, no electron traps or defect-assisted 

nonradiative recombination centers have been reported in CZTS(Se) literature.  Chapter 3 

presents the results of DLTS research showing evidence for a deep electron trap near the 

CZTSSe midgap, which is highly suggestive that carrier recombination may be assisted by 

deep traps within CZTS(Se). 

Defects within CZTS(Se) may also form  charge neutral groupings which convert 

defects that would otherwise trap or assist in recombination into electrically benign 

clusters.  For example, the defect complex predicted to have the lowest formation energy 

is the antisite pair [CuZn
− + ZnCu

+].  This antisite defect complex, with a formation energy 

of 0.2 eV, is a unitary element that can be used to switch between the kesterite and stannite 

polymorphs polymorphsas discussed previously.  The overall impact on the electronic and 

optical properties in forming this defect complex is weak, however, the difference between 
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the bandgap of the stannite and kesterite polymorphs does raise questions as to the overall 

effects on CZTS(Se) device performance.  Chapter 5 presents the results of modeling 

polymorph variation within a CZTS solar cell, and presents the findings that placing 

kesterite at the interface and stannite within the bulk of the absorber layer increases the 

overall solar cell efficiency. 

Even though some stoichiometric complexes are fairly benign, not all complexes 

that conserve stoichiometry can be considered harmless.  For example, the [ZnSn + SnZn] 

cluster decreases the band gap by 0.3 eV in Cu2ZnSnS4 and 0.1 eV in Cu2ZnSnSe4 [12], 

which may indicate a lower VOC and higher tendency for carrier trapping.  Although their 

formation energy is predicted to be fairly high and thus their total concentration should be 

relatively low, evidence for increased film disorder and lower photoluminescence is 

presented in Chapter 4.  This highlights the problem with the common assumption that 

excess Sn flux during CZTS(Se) film deposition to prevent SnS(Se) losses from the films 

does not impact the Sn-related defect population within the absorber layer.   

Experimental results from stoichiometric variation of CZTS(Se) within solar cells 

indicate higher device efficiencies for compositions of Cu/(Zn + Sn) ≈ 0.8 and Zn/Sn ≈ 1.2.  

Calculated defect formation energies and concentrations indicate several non-

stoichiometric defect complexes may contribute to this observation [12].  The three 

nonstoichiometric defect clusters predicted to have the lowest formation energies are 

[2CuZn
- + SnZn

2+], [VCu
- + ZnCu

+], and [ZnSn
2- + 2ZnCu

+].  The defect cluster [2CuZn
- + 

SnZn
2+] causes a downshift in the CBM which may encourage electron trapping, whereas 

the other two complexes have little effect on the VBM or CBM.  Therefore a Cu-poor and 

Zn-rich film may avoid the more deleterious defect complexes in favor of more electrically 



12 

benign albeit off-stoichiometry complexes.   Both Chapters 3 and 4 explore the 

implications of Sn-related defects as well as minority carrier trapping, which may provide 

some further insight into defect formation within CZTS(Se). 
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Figure 1.1.  Cross-section of a typical CZTS(Se) solar cell device.  This substrate 

configuration is illuminated on the front side of the diode.  Charge carriers are generated 

and separated within the CZTS absorber layer.  Holes are collected at the back contact 

(Mo), and electrons are collected at the front contact (Ni/Al).  Cross-section of a typical 

CZTS(Se) solar cell device showing all layers that comprise a full device.   

 

 

Figure 1.2.  Band diagram of CdS/CZTSe p-n junction.  The junction is in equilibrium with 

no applied bias.  Quasineutral regions (QNR) are shown in blue for both n-type CdS and 

p-type CZTSe.  The space-charge region (SCR) extends primarily into the lower-doped 

CZTSe.  Electrons (black dot) and holes (black circle) generated in the SCR drift to the 

front and back contacts respectively due to the energetic difference on the conduction and 

valence bands of CdS and CZTSe. 
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Figure 1.3.  Polymorphs of CZTS. (a) Kesterite and (b) stannite differ only in Cu and Zn 

cation arrangement. 

 

 

Figure 1.4.  Measured and calculated defect ionization energies for CZTS(Se).  Calculated 

ionization energies for CZTS and CZTSe [12] are represented by red lines and labeled with 

the change in charge states.  Experimentally determined values of defect energies in CZTS, 

CZTSSe with varying S/Se ratios, and CZTSe are represented by blue lines or bands and 

are reported in [31], [38], [39], [42] (CZTS), [33]–[35], [38], [40], [41] (CZTSSe), and 

[36], [37] (CZTSe).  The energy is given with respect to the valence band maximum 

(VBM).  The conduction band minimum varies from 1.5 for CZTS to 1.0 for CZTSe and 

changes depending on the S/Se ratio for CZTSSe. 
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CHAPTER 2 

CAPACITANCE SPECTROSCOPY 

Temperature Admittance Spectroscopy 

Temperature admittance spectroscopy (TAS) can be used to determine the apparent 

energy levels and capture cross sections of shallow majority carrier traps, estimate the free 

carrier concentration, determine the temperature range for DLTS measurements, and may 

be used to troubleshoot interferences from secondary junctions.   

Admittance is a complex quantity, with the conductance and capacitance related to 

the real and imaginary parts of the admittance.  Temperature admittance spectroscopy is a 

measurement of the capacitance and conductance of a junction as a function of the 

frequency (𝜔) of AC voltage oscillation.  Majority carrier (hole) traps within the p-type 

CZTSSe band gap within the depletion region where the Fermi level (EF) crosses the defect 

charge transition level (ET) may be able to change their occupation state depending on the 

temperature (T) and 𝜔 of measurement and the emission rate (𝑒𝑝) of holes from the trap.  

The threshold frequency, or the frequency at which the trap ceases to respond and the 

junction admittance changes, is governed by the emission and capture rates of the trap 

being stimulated.  If the frequency or the temperature changes so the trap can no longer 

respond, the trap occupation changes and hence causes a measurable change in capacitance.  

At lower frequencies, the trap will be able to follow the AC voltage frequency and capture 

and emit the carrier within one cycle.  Since the trap emits holes by thermal excitation, as 

the temperature increases, the emission rate also increases.  Therefore, the capacitance step 
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occurs at higher frequencies for higher temperatures.  If 𝑒𝑝 <  𝜔, at low temperatures and 

high frequencies, then the trap cannot respond to the voltage stimulus.  If 𝑒𝑝 >  𝜔, then the 

majority trap can emit and capture holes with capture (𝑐𝑝) and emission rates defined by 

the equations 2.1 and 2.2 [1]. 

 𝑐𝑝(𝑇) = 𝜎𝑝(𝑇)〈𝜈𝑝(𝑇)〉𝑝(𝑇) (2.1)  

 𝑒𝑝(𝑇) = 𝑐𝑝(𝑇)exp (
−𝐸𝑇

𝑘𝑇
) 

(2.2)  

These rates include both characteristics of the bulk material, carrier average thermal 

velocity 〈𝜈𝑝〉 and free hole concentration 𝑝, as well as properties unique to the trap itself, 

capture cross-section 𝜎𝑝 and energy level within the band gap that corresponds to the 

charge transition 𝐸𝑇.  This energy 𝐸𝑇 is referenced to the relevant band edge, which is the 

valence band edge in the case for hole capture in p-type CZTSSe.  The resulting signal is 

a step in capacitance or a peak in conductance at the demarcation energy where 𝑒𝑝 =  𝜔.  

Using this equality in equation 2.2, the demarcation energy ω𝑚𝑎𝑥  is now defined by 

equation 2.3.  The temperature dependence of 〈𝜈𝑝〉 and 𝑝 are moved to the left hand side 

of the equation, and the A term accounts for the remaining factors within the capture rate 

(equation 2.1).   

 
ω𝑚𝑎𝑥

𝑇2
= 𝑙𝑛A −

𝐸𝑇

𝑘𝑇
 

(2.3)  

Measurements are made by observing the capacitance of a junction excited with an 

oscillating AC voltage with a set amplitude over a varying frequency range.  Typical 

measurement AC voltage is ~kBT/q or 25-50 mV, and the frequency range of our 

instrumentation is 20 Hz-1 MHz.  Capacitance vs. ω curves are then collected over a 

temperature range, typically from 100-335 K, yielding a data set like the simplified 
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example shown in Figure 2.1 (a).  The derivative of the capacitance with respect to 

temperature is then plotted as seen in Figure 2.1 (b), and the corresponding (ω, Tmax) points 

are plotted on an Arrhenius plot like the one shown in Figure 2.1 (c).  The Arrhenius 

equation (2.3) is derived from 𝑒𝑝(𝑇), and ω=𝑒𝑝 at Tmax.  The slope is proportional to the 

apparent trap energy, and the intercept is used to obtain the temperature-independent 

apparent 𝜎𝑝.  The trap signature, which is the apparent 𝐸𝑇 and 𝜎𝑝, is not the absolute trap 

energy and capture cross section due to possible unaccounted-for entropy effects and 

temperature dependencies of 𝜎𝑝.  Other phenomena including band discontinuities or back 

contact barriers for example, can also produce apparent trap signatures.  Therefore, the 

interpretation of the trap signature must be approached with care.   

 

Deep Level Transient Spectroscopy 

Unlike TAS measurements taken with a sinusoidally oscillating test signal, deep 

level transient spectroscopy (DLTS) is a transient capacitance decay measurement driven 

by an abrupt change in voltage or light bias.  Like DLTS, TAS is also used to calculate the 

apparent capture cross section and trap energy of defects of a semiconductor in a p-n 

junction.  DLTS is more sensitive to lower concentrations of traps and can characterize 

deeper traps than those detected by TAS.  The capacitance of a p-n junction can be altered 

by filling or emptying traps of charge carriers.  The capacitance (𝐶) of the p-n junction is 

inversely proportional to the square root of the applied voltage (𝑉) and directly proportional 

to the square root of the ionized impurity density in the space-charge region (𝑁𝑆𝐶𝑅) [2] as 

shown by equation 2.4.  The space charge density is the sum of all ionized defects including 

the shallower ionized acceptor 𝑁𝐴
−, ionized majority trap 𝑁𝑇

+, and ionized minority traps 

𝑁𝑇
− concentrations as shown by equation 2.5.  (These descriptions, charges, and equations 
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are assuming a p-type material and 𝑁𝑆𝐶𝑅 is uniform versus distance.)  

 𝐶 = 𝐴√
𝑞𝜀𝑆𝜀0𝑁𝑆𝐶𝑅

2(𝑉𝑏𝑖 − 𝑉)
 (2.4) 

 𝑁𝑆𝐶𝑅 = 𝑁𝐴
− − 𝑁𝑇

+ + 𝑁𝑇
− (2.5) 

Both deep and shallow traps contribute to NSCR.  The trap occupation can also be 

altered by light, temperature, and/or applied bias voltage to the junction.  The easiest DTLS 

measurement is the majority carrier emission, which is the emission of holes from a trap in 

p-type CZTS(Se).  This majority carrier emission measurement consists of a “filling pulse” 

followed by a “measurement” time period.  Typically, traps are filled by applying zero or 

forward bias voltage to the p-n junction, which results in decreasing the width of the space 

charge region within the CZTS(Se).  Then the junction is abruptly switched to reversed 

bias, and the decay in capacitance is measured as a function of time.  This change from 

forward to reversed bias changes the band bending of the conduction and valence bands, 

and alters the trap occupation.  Figure 2.2 demonstrates these concepts. 

From the collective data set, an apparent capture cross section (σp) and trap energy 

(ET) are calculated in a similar manner to TAS.  The rate window (time over which the 

capacitance difference is measured) is varied instead of the frequency for the Arrhenius 

plot.  The rate window is related to 𝑒𝑝 by equation 2.6 [2] in which t1 and t2 are the first 

and second times the capacitance is taken for the rate window and emission rate 

calculations.  Figure 2.3 demonstrates how the raw transients measured at a range of 

temperatures are analyzed to determine σp and ET [2], [3]. 

 𝑒𝑝 =
ln 𝑡2/𝑡1

𝑡2 − 𝑡1
 (2.6) 
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Figure 2.1.  TAS analysis steps.  Temperature admittance spectroscopy analysis steps start 

with (a) raw data and show how to (b) identify (ω, Tmax) points and then (c) calculate the 

trap energy and capture cross section from the Arrhenius plot. 
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Figure 2.2.  Diagram of the steady state, filling pulse, and measurement conditions for 

majority carrier emission DLTS measurements.  This diagram illustrates processes 

occurring in the p-type material of an n+
-p junction.  (a) Displays the voltage conditions.  

(b) Displays the energy band diagrams with the space-charge region highlighted in purple.  

Traps below the Fermi level (EF) are unoccupied by holes and negatively charged.  Traps 

above EF are occupied and neutral.  During the zero bias voltage filling pulse, the space-

charge region is shortened due to decreased band bending, and traps are filled.  During the 

reverse bias measurement, the previously filled traps emit holes (majority carrier).  (c) 

Shows the ionized carrier density in the space-charge region (NSCR) that results from the 

shallow acceptors (at energy EA in (b)) and the deep traps (at energy ET in (b)).  The 

negative space-charge density decreases due to deep trap neutralization during the filling 

pulse, and it increases again during the transient measurement.  (d) Shows the capacitance 

response for all three conditions, with the increased capacitance during the filling pulse 

resulting from the smaller SCR, and the increasing transient during the measurement results 

from traps ionizing as they empty of holes.   
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Figure 2.3.  Example of DLTS data calculations.  The example shown is expected for a 

DLTS measurement of emission of a majority carrier from a deep trap.  (a) Displays the 

capacitance transients from high to low temperature.  The capacitance quickly returns to 

the steady-state capacitance at high temperature, and returns very slowly at low 

temperature.  At both extremes, the magnitude in the change of capacitance (ΔC) is very 

small.  A midrange temperature shows a much higher ΔC shown by the height in (a) or 

width of the yellow bar in (b).  (b) Plot of the ΔC shown in (a) as a function of 

temperture.  (c) Shows several ΔC(T) curves for various rate windows (t2-t1).  The 

maxima of these curves are used to obtain (ep,T) points for an Arrhenius plot like the one 

shown in Figure 2.1 (c).   
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CHAPTER 3 

OBSERVATION OF A MINORITY CARRIER 

DEEP DEFECT IN CZTSSE 

 

Abstract 

Thin film solar cells using Cu2ZnSn(S,Se)4 (CZTSSe) as the light absorber have 

promise as a technology scalable to terawatt installed photovoltaic generating capacity 

without significant raw materials price increases caused by scarcity.  However, to date, 

even near-record efficiency CZTSSe devices exhibit large open circuit voltage (VOC) 

deficits and short minority carrier lifetimes.  To investigate the origins of this VOC loss, we 

used junction capacitance spectroscopy to explore the underlying causes of nonradiative 

recombination in CZTSSe devices.  Deep level transient spectroscopy (DLTS) in reverse 

bias was used for the first time to identify a midgap defect capturing and emitting minority 

electrons in the depletion width of devices based on selenized Cu2ZnSnS4 nanoparticle ink 

absorber layers.  This state is 590 meV from the conduction band edge with an energy 

distribution approximately 170 meV wide and has an apparent electron cross section 

approximately 2 × 1014 cm2.  These characteristics make it likely that this state can 

contribute to low minority carrier lifetime and reduced VOC in operating photovoltaic 

devices and we investigate the extent of such effects.   
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Introduction 

The semiconductor Cu2ZnSn(S,Se)4 (CZTSSe) is an alternative photovoltaic 

material used in thin film solar cell devices to circumvent supply and price bottlenecks 

concerns of indium and tellurium [1].  CZTSSe has a decent absorption coefficient and a 

bandgap tunable from 1-1.5 eV depending on the selenium to sulfur ratio.  Although the 

earth-abundant components and ideal material properties make CZTSSe a great candidate 

for possible scale-up to terawatt photovoltaic power systems, the record CZTSSe device 

efficiency of 12.6% [2] lags those of CdTe 21.0% [3] and CIGSSe 20.8% [4].  The main 

performance disparity between CZTSSe and CIGSSe, which have similar bandgaps for 

record devices, is the lower open circuit voltage (VOC) in CZTSSe.  The CZTSSe record 

efficiency device has a 617 mV VOC deficit [2] as compared to a 356 mV VOC deficit for 

CIGSSe [4].   

Three factors are suspected to lower VOC in CZTSSe devices: 1) defect mediated 

recombination, 2) band tails, and 3) cliffs or spikes in the band alignment of the 

CdS/CZTSSe heterojunction [1].  The first two factors are related to defects which result 

from crystalline disorder.  These defects and defect aggregates may have localized or 

partially-localized electrostatic potentials that may be distributed homogeneously or 

inhomogeneously within grains or may exist only at interfaces and grain boundaries [5]–

[7].  The quaternary or pentenary nature of CZTSSe lends itself to a wide variety of native 

vacancy, interstitial, and antisite defects [8].  If the defect energies lie relatively close to 

the band edges, they will dope the material but an aperiodic spatial distribution will also 

contribute to band tails.   

Band tails lower the VOC by decreasing the effective band gap for absorption 
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compared to that for transport [7].  The defect states that give rise to band tails are more 

electrostatically localized and extend beyond the conduction and valence band mobility 

edges into the band gap of CZTSSe.  The electron hole pairs generated at these more 

localized sites by light whose energy corresponds to this decreased effective band gap do 

not contribute to the overall photocurrent produced since these carriers cannot be swept 

away into the conduction or valence bands.  Band tails also induce lateral fluctuations in 

the bandgap that assist in tunneling-enhanced recombination and further exacerbate defect-

assisted recombination [9].  Band edge fluctuations can account for approximately 125 mV 

of the VOC loss (This estimate is based on the ~80 meV bandgap fluctuation amplitude 

measured for CZTSSe [6], and equation 10 in Rau et al. [7])  Nonradiative recombination 

centers most likely also contribute to additional VOC loss, although they have not yet been 

observed.    

Defects whose energies lie near midgap are more likely to trap carriers and act as 

nonradiative recombination centers.  This Shockley-Read-Hall (SRH) recombination 

lowers the minority carrier lifetimes within the absorber layer [10].  For co-evaporated 

CZTSe solar cells, short minority carrier lifetimes of a few ns [11] and increasing energies 

of Urbach band tail states [5], which are correlated with trap densities, have been implicated 

in decreasing VOC.  Equations 3.1 and 3.2 show the relationship between VOC and the 

minority carrier lifetime τn.  In addition to decreasing the reverse saturation current JO, 

smaller minority carrier lifetime can decrease the light-generated current J as well 

(Equation 3.3). 

 𝑉𝑂𝐶 =
𝑛𝑘𝑇

𝑞
𝑙𝑛 (

𝐽𝑆𝐶

𝐽0
+ 1) 

(3.1)  
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𝐽𝑂 = 𝑞𝑛𝑖
2 (√

𝐷𝑝

𝜏𝑝

1

𝑁𝐷
+ √

𝐷𝑛

𝜏𝑛

1

𝑁𝐴
) 

(3.2)  

 𝐽 = 𝐽𝑂 [exp (
𝑞𝑉

𝑛𝑘𝑇
− 1)] 

(3.3)  

The temperature dependence of VOC in solution-deposited CZTSSe devices also 

indicates significant recombination occurring at the CZTSSe/CdS interface [12], although 

some of this voltage loss may also be caused by bandgap fluctuations [6].  Many measured 

activation energies (Ea) ranging from 25 to 280 meV from the valence band edge (VBE) 

have been attributed to more shallow acceptor states in CZTS(Se) devices.  These Ea are 

affected by Cu, S/Se, and Na content as well as sample aging [13]–[21].  Deeper defects 

have also been observed and attributed to 800 meV optical defects [5], which assist in 

radiative recombination, quasi donor/acceptor pairs at 400 meV [22], and deeper acceptors 

from 428 meV to >637 meV [20] (Figure 1.4). 

Previous CZTSSe device studies cover a wide array of absorber layer deposition 

techniques including coevaporation, sulfur/selenization of metallic precursors, and 

hydrazine-processed CZTS(Se) (Figure 1.4).  The most common measurement techniques 

used for defect characterization are capacitance spectroscopy methods that include thermal 

admittance spectroscopy (TAS), deep level transient spectroscopy (DLTS), drive level 

capacitance profiling (DLCP), and transient photocapacitance and transient photocurrent.  

Photoluminescence (PL) techniques measure radiative recombination, but nonradiative 

defect-assisted recombination is the main area of interest in determining the defects 

participating in SRH recombination which decreases VOC.  Although deep defects have 

been reported, only majority traps have been directly observed.  Defect-assisted 

recombination centers have not yet been identified in CZTS(Se), although their presence 
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is likely.  Capture of both electrons and holes must be observed, or the defect concentration 

and minority carrier lifetime must be correlated in order to conclude a defect acts as a 

recombination center.   

In this work, we observe a near midgap defect behaving as a minority carrier trap 

within CZTSSe by measuring a η = 7% solar cell device containing a selenized CZTS 

nanoparticle ink absorber layer.  From DLTS measurements, we determine the trap lies 

590 meV from the conduction band edge and has an electron-attractive capture cross 

section of 2 × 10-14 cm2.  The DLTS signals observed are distinguished from non-Ohmic 

back contact responses.  Admittance spectroscopy measurements show a temperature-

dependent series resistance of the junction with an activation energy of 110 meV from the 

valence band edge and a neutral apparent capture cross section for holes of 6 × 10-17 cm2.  

These observations provide direct evidence that midgap traps within CZTSSe are capable 

of trapping minority carriers and are very likely to act as recombination centers under 

forward biasing from illumination during device operation.  

 

Experimental 

CZTSSe Device Fabrication 

The CZTSSe absorber layer in the reported solar cell devices were formed from 

CZTS nanoparticles annealed in a Se vapor.  The CZTS nanocrystals were formed by 

reacting Cu, Sn, and Zn salts with sulfur in an oleylamine solution.  This “nanoparticle ink” 

was then spread on a Mo/glass substrate, the solvent was evaporated, and the resulting 

CZTS nanocrystals were then annealed in a Se vapor to yield ~1 µm grains of CZTSSe.  

The device stack consisted of a Mo back contact on glass, ~1 µm CZTSSe, CdS, ZnO, 

indium tin oxide, and Ni/750 nm Al front contacts.  The film synthesis and device 
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fabrication is described in [23], [24].  Original solar cell sizes were 0.48 cm2, and 1.9 mm2 

subcells were scribed with a needle to obtain capacitance values within the measurement 

limits of the electrical characterization equipment. 

 

Defect Characterization 

Electrical spectroscopy measurements were performed using a system built by 

Semetrol and having an LCR meter (Quadtech 1920) for admittance spectroscopy and a 

fast capacitance bridge operating at 1 MHz (Boonton 7200) for deep level transient 

spectroscopy and CV.  Samples were mounted on a copper stage within a closed-cycle 

cryostat with optical access.  Temperatures were measured by a small Si diode held by a 

spring to the film side of the solar cell devices.  Thermal and mechanical contact between 

the copper stage, sample, and temperature sensor was made using GE varnish.  The 

impedances of the electrical connections to the sample were characterized and found to be 

negligible.  A harmonic AC signal of 50 mV was used for temperature dependent 

admittance spectroscopy measurements from 20 Hz-1 MHz.  Data collected at the lower 

frequencies are not reported due to excessive noise.  Each capacitance (C) vs. f curve was 

collected at constant temperature (T) incremented by either 3 K or 5 K.  Deep level transient 

spectroscopy involves the measurement of capacitance vs. time transients following step 

changes in electrical or light bias and is used to detect deep level defects.  Each transient 

was measured at constant temperature at 3 K or 5 K increments.  The capacitance 

measurements were made during -0.5 V reversed bias voltage after a 0 bias fill voltage 

pulse.   
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Results and Discussion 

The physical and device characteristics of devices from the same batch of samples 

used in this study were previously reported [24].  Dark and illuminated J-V curves for both 

the full cell and the smaller scribed subcell in this study are shown in Figure 3.1.  The 

subcell performance is similar to that of the full cell, however, the efficiency is 1% lower 

due to small reductions of both JSC and VOC.  These losses may indicate device degradation 

induced either by temperature cycling during capacitance spectroscopy measurements or 

by aging of the CZTSSe layer since the subcell power curves were measured after the TAS 

and DLTS measurements.  The lower series resistance of the subcell is most likely due to 

increased front contact area that reduces current spreading resistance, whereas the lower 

shunt resistance may arise from either localized CZTSSe inhomogeneity, or from effects 

due to the ultrasonic wire bonding to the front contact.  The ideality factor greater than 1 

also points to recombination occurring in traps within the depletion width.  Even though 

the subcell is slightly less efficient than the full cell, we do not expect the effects of the 

subcell preparation to change the overall conclusions in this work. 

Thermal admittance spectroscopy of the subcell (Figure 3.2) indicate a very wide 

distribution of states with an activation energy that corresponds to junction freezeout.  The 

admittance (Y) vs. frequency (ω) values were corrected based on previously published 

methods [25], [26] using the equation Ycorrected = Y – RS – iωLS where RS and inductance 

(LS) were chosen fitting parameters.  First, LS and RS were allowed to float, and LS was 

chosen by minimizing the error function [26] as well as accurately fitting the increasing 

capacitance values at high temperature and frequency, which are indicative of inductive 

effects.  Using the resulting best fit LS = 1.65 x 10-6 Henrys, the function was then fitted 
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using values spanning from RS = 5 Ω to RS = 40 Ω, and choosing RS = 12 Ω, which 

minimized overall error in the corrected admittance function.  These admittance corrections 

are described in more detail in Caruso et al. [27]  The inductance and resistance corrections 

do not change the shape of the long, sloping tail of the capacitance at low frequencies, 

which indicates the gently sloping capacitance step is from a very wide distribution of time 

constants.  Furthermore, the high frequency, low temperature capacitance values converge 

to the geometric capacitance Cg = 153 pF, indicating this step corresponds to the activation 

energy of junction freeze out.  The calculated subcell Cg = 138 pF (using the dielectric 

constant 8.24ε0 for EG=1.1 eV) is close to the experimental result.   

The activation energy (Ea) for junction freezeout as measured by TAS is 110 ± 20 

meV (Figure 3.3), with a relatively small apparent hole capture cross section (σp) of 6 ×

 10-17 cm2.  This commonly observed state within CZTS(Se) devices [17], [18], [20] has 

been previously been analyzed as a trap state, although recent work within our research 

group [27] demonstrates the temperature dependence of this capacitance step (analyzed for 

a different CZTSe device) instead arises from effects of acceptor freezeout on a non-Ohmic 

back contact.    

Figure 3.3 also presents Ea and the electron capture cross section (σn) for the defect 

measured by DLTS.  Figure 3.4 (a) shows the DC voltage and pulse times used in this 

measurement and presents the expected transient behavior of either a majority (b) or 

minority (c) trap.  The observed transients are decreasing in capacitance.  An isothermal 

transient at 299 K is shown in Figure 3.5.  This decreasing capacitance behavior indicates 

a minority carrier (electron) emission process (Figure 3.4 (c)) is most likely occurring.  

Since the full interpretation of DLTS relies on knowledge of the junction parameters as 



35 

determined by the ionized acceptor concentration, it is important to note the DLTS 

measurements occur over an entirely different temperature range that is higher than those 

for which we observe the junction freezeout.  Thus, we can assume the ionized acceptor 

concentration is relatively constant over the range of temperatures comprising the DLTS 

peak response for the rate windows used herein.  Temperature dependent capacitance-

voltage measurements (CVT) of the subcell confirm this observation and show an average 

hole concentration of 1 × 1016 cm-3 from 270-335 K.  In addition to a different temperature 

range, the rate windows in the DLTS measurements correspond to a lower frequency range, 

10-3-3 Hz, than those used in TAS, 100-106 Hz.  This also indicates the processes 

characterized by TAS and DLTS arise from different activation mechanisms, temperature-

dependent series resistance for TAS and emission of a minority carrier from a defect for 

DLTS. 

The activation energy for the carrier emission from the defect measured by DLTS 

is 590 ± 50 meV from the conduction band edge (Ec) and σn = 2 × 10-14 cm2.  Unlike the 

more shallow acceptor state, the small minority carrier σn of this deep state indicates it has 

more coulombic attraction for electrons [28] and a much higher rate of electron capture 

[29].  This minority carrier trap is a very likely contributor to recombination, especially 

due to its presence near midgap.  The assignment of this response to a minority carrier 

(electron) capture from and emission to the conduction band arises from a decreasing 

capacitance transient within DLTS measurements.   

Our observations of a decreasing instead of an increasing DLTS signal are atypical 

of other reported DLTS results of CZTS(Se) [20].  Although voltage-pulsed DLTS is 

typically considered to measure defects within the p-type absorber layer of an n+p device, 
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the capacitance transients may also be affected by high circuit resistance, non-Ohmic 

contacts, or interface defects.  These possibilities further complicate interpreting 

decreasing transients, which are usually considered to be a result of minority carrier 

(electron) emission, but may instead be from high series resistances within the device or a 

Schottky junction between the CZTSSe and Mo.  In the following analyses, we examine 

the possibilities of the observed DLTS signal arising from either a deep minority trap 

within CZTSSe or from a back contact and conclude the signal is most likely from a deep 

minority trap within CZTSe.   

Conventional and complementary DLTS measurements with equal fill and 

measurement pulse times demonstrate a decreasing transient signal (Ct2 – Ct1 = ΔC < 0) for 

conventional measurements and an increasing transient (ΔC > 0) for complementary 

measurements (Figure 3.6).  If the measured circuit contains a high enough series resistance 

in either the solar cell device or the accompanying electrical measurement system, the 

transient will change polarity [30].  We tested this possibility by adding a 470 Ω resistor in 

series with the device, which caused the transient to flip from decreasing to increasing in 

capacitance value over time.  If the transient was already flipped from high series resistance 

before the additional resistance was added, we would expect only a decrease in signal 

amplitude, not a polarity change.  Therefore, we exclude series resistance within the 

original circuit as the cause of the decreasing signal.   

The transient also decreases if majority carriers (hole) are captured by the trap.  

Increased energy band bending within the depletion region under reversed bias 

measurement conditions suggest holes are more likely to be emitted rather than captured 

during the measurement in reversed bias (conventional DLTS – Figure 3.6 (b)).  However, 
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if we still consider hole capture in reversed bias a possibility, we would expect a larger 

amplitude of ΔC for the complementary signal (i.e., for hole emission) than the 

conventional signal (i.e., for hole slow capture) [31].  As can be seen in Figure 3.6, we 

observe the opposite effect.  So we also exclude that the decreasing transient arises from 

majority carrier capture during conventional DLTS measurements.   

Theoretical predictions and experiments with standard circuits show a decreasing 

capacitance transient may also be from a non-Ohmic back contact that has a time constant 

for the n+p junction greater than the time constant of the non-Ohmic back contact (τJ>τBC) 

[32].  If this were the case, the complementary DLTS signal should have the largest 

amplitude, however, we observe the opposite.  The maximum change in capacitance for 

the complementary DLTS transients (Figure 3.6 (a)) is 3 orders of magnitude smaller for 

the conventional measurements (Figure 3.6 (b)).   

After excluding the series resistance, hole capture, and a non-Ohmic back contact 

from causing the decreasing transient, we conclude it is most likely due to electron 

emission in conventional DLTS, and the complementary signal is from the slow capture of 

electrons.  Capture rates depend on carrier concentration available for capture, and this 

concentration can vary spatially from the depletion region to the quasineutral region (QNR) 

of the CZTSSe layer.  Therefore, the capture rate can spatially vary from “slow” to “fast” 

capture.  Both of these capture rates are faster than emission, which occurs from filled traps 

within the depletion region during the reversed bias measurement [29].  The change in 

capacitance is directly proportional to the number of traps responding to the voltage pulse 

[33], therefore a higher ΔC indicates more traps are involved.  Fast capture occurs on a 

time scale not measurable by our instrumentation, so only the emission and slow capture 
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processes are observed.  All traps emit at relatively the same rate, therefore, the number of 

traps corresponding to a time constant is expected to be much larger than the very small 

amount of traps responding at the slow capture rate.  Therefore, in addition to the amplitude 

of the DLTS signals, the comparative rates deducted from the conventional and 

complementary measurements also point to a minority trap rather than a non-Ohmic back 

contact.  Figure 3.7 shows the normalized ΔC maximum occurs at a lower temperature for 

the complementary than for the conventional DLTS measurements.  This lower 

temperature maximum indicates a faster transient during complementary measurements.  

The observed faster transient during the complementary measurements indicates a slow 

capture process is most likely occurring.  For a back contact response, the complementary 

DLTS measurement is expected to be slower (i.e., maximum ΔC is at a higher temperature) 

than that of the conventional DLTS measurement [31].   

Figure 3.8 shows the energy band diagrams which demonstrate the trap occupation 

changes with applied bias due to the trap energy relative to the electron quasi-Fermi energy.  

These diagrams were generated from a SCAPS model in which the CZTSSe material 

parameters [34] were calculated assuming a 20% CZTS content based on Eg=1.1 eV and 

linear dependence on material properties with composition.  According to the model, the 

trap only changes occupation within 46 nm of the depletion region (Figure 3.9).  Assuming 

this deep defect is homogenous throughout the bulk, the capacitance response would only 

account for a small portion of the total defects.  This is discussed further in the density of 

trap states calculation below.  The capture cross section of holes was chosen to be 1 x 10−18 

cm-2 to demonstrate the defect state acting only as a minority trap since that is most 

consistent with our observations within DLTS transient.  In the SCAPS model, the trap 
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acting as a minority trap with a low hole capture cross section accounts for an 11% relative 

drop in cell efficiency.  If the trap is included, and the hole capture cross section is increased 

to 1x10-15 cm-2, the trap behavior and occupation differ dramatically, and the overall cell 

efficiency drops 35% relative to the model with no trap.  Other DLTS observations of near 

midgap traps acting as acceptors [20] indicate the high likelihood that deep traps may trap 

holes as well as electrons.  Therefore, these traps may act as recombination centers, 

although DLTS is an inadequate method for observing recombination.   

The trap signature reported in this study does not account for entropy effects as well 

as possible temperature-dependence of the capture cross section.  The emission rate 

equation and subsequent Arrhenius analysis assume a temperature-independent capture 

cross section as well as the trap energy being equivalent to the Gibbs free energy.  In these 

temperature-dependent emission rate determinations, only the enthalpy within the Gibbs 

free energy is actually measured [29], and the entropy term for ∆𝐺 =  ∆𝐻 − 𝑇∆𝑆 is 

neglected.  A more accurate analysis would use optical excitation to directly account for 

the entire Gibbs free energy as well as directly measuring the capture cross section as a 

function of temperature using techniques such a variable pulsed width DLTS [29].  The 

density of trap states (NT) within the bandgap was approximated by equation 3.4 [33] 

(Figure 3.10).  C0 is the steady state capacitance at the applied bias, x1 is the position in the 

depletion region at 0 V applied bias where ET=EF, x2 is the position in the depletion region 

at -0.5 V applied bias where ET=EF, and xd is the depletion width at -0.5 V (Figure 3.9). 

 
𝑁𝑇 = 2

∆𝐶

𝐶0
𝑁𝐴 (

𝑥𝑑
2

𝑥1
2 − 𝑥2

2) 
(3.4)  

The number of shallow acceptors NA = 1 × 1016 cm-3 was estimated by measuring 

the free carrier density using CVT and assuming 90% of the shallow acceptors were ionized 
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(as per the SCAPS simulation).  The shallow acceptor ionization did not change 

significantly between forward and reversed bias since the 110 meV acceptor state lies well 

below the quasi-Fermi energy for holes.   The entire band of states could not be measured 

due to temperature limits of the cryostat chamber, so the full width half max (FWHM) of 

170 meV and a total trap concentration of 1 × 1015 cm-3 were determined by Gaussian fit.  

The NT calculation is based on the assumption that trap emission occurs over only 46 nm 

of the sample.   

 Figure 3.11 shows the overlay of the observed minority trap within the CZTSSe 

with defect energy predictions [8] of various defects in CZTS and CZTSe.  Several deep 

traps are predicted to have an energy near the observed minority trap energy of 590 meV 

from the CBE of CZTSSe, shown as 510 meV from the VBE in Figure 3.11 due to the 

CZTSSe Eg=1.1 eV.  Since it is unlikely that a negatively charged defect (i.e., CuSn) would 

capture an electron, the observed minority trap is more likely due to the neutral/positively 

charged VS,Se or SnZn defects.  Further studies directly correlating atomic arrangement and 

composition with defect concentrations are required to conclusively attribute this midgap 

minority trap to SnZn or VS,Se defects.   

 

Conclusions 

We observe a near midgap defect behaving as a minority carrier trap in reverse bias 

DLTS experiments within CZTSSe by measuring a η = 7% solar cell device containing a 

selenized CZTS nanoparticle ink absorber layer.  Using DLTS and CVT analyses, we 

determine the trap lies 590 meV from the conduction band edge, has an electron-attractive 

σn = 2 × 10-14 cm2, a FWHM of 170 meV, and a total trap concentration of 1 × 1015 cm-3.  

The decreasing transient observed in the DLTS spectra is attributed to a near midgap 
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minority trap as opposed to a signal from a non-Ohmic back contact based on comparisons 

of the conventional and complementary voltage-pulsed DLTS measurements.  Admittance 

spectroscopy measurements also corroborate previous studies of an acceptor state with a 

junction freeze out activation energy of 110 meV from the valence band edge and a neutral 

capture cross section of σp = 6 × 10-17 cm2.   

Evidence for low VOC of CZTSSe devices that is partially from low minority carrier 

lifetimes has previously been reported [11], and our observation provides direct evidence 

that deep states within the bandgap of CZTSSe are capable of trapping minority carriers 

and therefore are likely to act as recombination centers and lower the VOC during operation 

when the device is in forward bias.  When comparing the observed trap energy with 

theoretical predictions of defects within CZTS and CZTSe, it is proposed the midgap trap 

may be attributed to either SnZn or VS,Se.  Our former work [35], [36] implicates high Sn 

activity with deleterious Sn-related defects despite the self-limiting nature of SnS.  If the 

midgap trap is indeed the SnZn defect, this could cause further concern for the commonly 

used high Sn activity during deposition and/or annealing.  Another study shows the VS
2+ 

defect is dominant in a large range of chemical potentials within CZTS [37], which may 

indicate the likelihood of the existence of this defect as well.  Further work to correlate this 

trap with a defect identity and determine if the trap can also act as a recombination center 

are needed to understand its overall contribution to lowering CZTSSe solar cell 

efficiencies. 
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Figure 3.1.  Current density-voltage curves.  Both the full cell (solid line) and subcell 

(dashed line) were measured in the dark (black line) and under AM 1.5 illumination (blue 

line).  Front contacts cover 20% of the subcell, therefore, calculations are based on a 1.5 

mm2 area.  The efficiency (η), open-circuit voltage (VOC), short-circuit current density 

(JSC), fill factor, series resistance (RS), and shunt resistance (RSH) are presented for 

comparison of both cells. 
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Figure 3.2.  Temperature admittance spectroscopy data.  Capacitance measurements from 

335 K (purple) to 55 K (red) at 5 K increments were corrected for series resistance and 

inductance effects.  The junction capacitance step converges to the geometric capacitance 

(Cg) at low temperatures. 
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Figure 3.3.  Arrhenius plot with TAS and DLTS trap signatures.  The Arrhenius plot with 

the apparent activation energies (Ea) relative to either the valence or conduction band edge 

(EV, EC) and either apparent hole or electron capture cross sections (σp, σn) calculated from 

either TAS (red circles) or DLTS (black diamonds) measurements.   
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Figure 3.4.  Voltage pulses and expected capacitance transients for majority and minority 

carrier emission.  (a) DC voltage pulsing.  Expected capacitance transient response due to 

change in voltage for either (b) majority or (c) minority capture and emission.  A large and 

fast response is expected for the depletion width decrease when changing from -0.5 V to 0 

V, and a slower transient is expected due to deep trap occupation response.  During the 

filling pulse, the free carrier is captured from the relevant band edge (Figure 2.2).  During 

the measurement time, that same carrier is emitted back to the relevant band edge.  An 

example of an expected capacitance response based on the change in 𝑁𝑆𝐶𝑅 (equation 2.5) 

is shown in solid red for (b) and (c) based on the proportionality to the right of the transient.  

The dotted portion of the capacitance curves represent the expected, but not measured, 

response.  Figure is not to scale. 

  



47 

 
Figure 3.5.  Decreasing capacitance transient observed at 299 K.  Measurement conditions 

are shown in Figure 3.4 (a). 
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Figure 3.6.  Conventional and complementary DLTS measurements.  The capacitance 

transients measured from two separate sets of DLTS measurements from 85 K to 335 K 

during either (a) no bias for complementary DLTS or (b) -0.5V reversed bias for 

conventional DLTS.  Both sets of experiments had equal duration excitation pulse and 

measurement times of 5 seconds.   
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Figure 3.7.  Conventional and complementary DLTS measurements for 100 ms rate 

window.  The change in capacitance (C) versus the temperature for a 100 ms rate window 

from the conventional (blue circles) and complementary (black diamond) DLTS signals.  

Normalized ΔCapacitance = [C(150 ms)–C(50 ms)]/C(5s).  The maximum amplitude of 

the normalized ΔCapacitance occurs at a higher temperature for the conventional DLTS 

measurement, therefore, the emission rate is assumed to be slower for this process than for 

the electron capture. 
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Figure 3.8.  SCAPS band diagrams.  These diagrams show the minority trap filling and 

emptying as a result for forward and reversed bias.  If electrons occupy the trap, the trap 

lies below the quasi-Fermi level for electrons (EFn). 

 

 

 

Figure 3.9.  Minority trap occupation within CZTSSe.  The positions x1 and x2 depict where 

the trap energy level crosses the quasi-Fermi level for electrons either in reversed bias 

(black) or no applied bias (red) in the dark. 
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Figure 3.10.  Density of states of deep minority carrier trap.  The density of the deep defect 

state (NT) measured by DLTS is calculated from the change in capacitance vs. temperature 

from DLTS and CVT measurements.  Electron capture and emission are illustrated as 

processes that interact with the deep state and the conduction band edge EC = 1.1 eV.  The 

reported full width half max (FWHM) and total NT are determined from the Gaussian fit.    

 

 

Figure 3.11.  Observed minority trap overlaid on calculated defect energies.  The blue band 

represents the observed apparent trap energy and DOS width and is compared to various 

vacancy and antisite defects in CZTS and CZTSe [8].  This trap falls within the theoretical 

limits of both the positively charged SnZn and VS,Se defect energies as defined by the 

predictions for CZTS and CZTSe. 
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CHAPTER 6 

PROJECT SUMMARIES AND SUGGESTIONS  

FOR FUTURE WORK 

 

Observation of a Minority Carrier Deep Defect in CZTSSe 

Summary 

Junction capacitance spectroscopy was used to explore the underlying causes of non-

radiative recombination in CZTSSe devices.  Deep level transient spectroscopy (DLTS) 

was used to identify for the first time a midgap defect capturing and emitting minority 

carriers (electrons) in the depletion width of devices based onCu2ZnSn(S,Se)4 absorber 

layers synthesized from nanoparticle ink.  In the sample analyzed, this deep state is 590 

meV from the conduction band edge, has a Gaussian energy distribution with FWHM 

approximately 170 meV, has an electron capture cross section approximately 2 × 10-14 cm2, 

and exists at a concentration near 1 × 1015 cm-3
.  These characteristics make it likely this 

state can contribute to low minority carrier lifetime and reduced VOC in operating 

photovoltaic devices, and we investigate the extent of such effects.  When comparing the 

observed trap energy with theoretical predictions of defects within CZTS and CZTSe, it is 

proposed the midgap trap may be attributed to either SnZn or VS,Se, although further work 

correlating chemical potential during processing with defect presence and concentration is 

required for more conclusive results.  The SCAPS modeling software is used to determine 

that the presence of the defect causes a relative device efficiency loss of 35% if it is 
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considered a recombination center, but even as a minority trap only, the cell loses 11% 

relative efficiency due to the presence of this deep defect. 

 

Future Work 

The deep minority trap signature derived from calculations based on the DLTS 

measurements may not accurately reflect the actual trap energy and capture cross section.  

Temperature dependence of the capture cross section as well as entropy considerations are 

not accounted for [1].  Attempts to measure the capture rate using variable pulsed width 

DLTS were not successful in part due to very fast capture rates that exceed the speed of 

the instrumental response time and also due to transient behavior that was a mix of both 

increasing and decreasing capacitance response within a single transient.  Due to this 

complicated behavior, determining the actual capture cross section is still of high interest 

in determining the accuracy of SCAPS (and other software) models to determine the overall 

effect on the CZTSSe device.  A different measurement method needs to be used to 

determine the capture cross section, or obtaining a clearly decreasing transient at the DLTS 

peak temperature may enable clear determination of the capture cross section via the 

method of varying the pulse filling width.  With an accurate capture cross section, an 

accurate trap energy may be calculated.     

 

Investigation of Combinatorial Coevaporated Thin Film Cu2ZnSnS4 (II):   

Beneficial Cation Arrangement in Cu-Rich Growth 

Summary 

Raman spectroscopy was used to investigate phase coexistence in CZTS thin films 

coevaporated at 325 or 470 °C.  At the lower growth temperature, there is a specularly 
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reflective band near and along the ZnS-Cu2SnS3 (CTS) tie line in the Cu-Zn-Sn-S 

quaternary phase diagram that corresponds to the coexistence of structurally coherent ZnS, 

CTS, and CZTS phases.  The structurally incoherent secondary phases, SnS2 and CuS, exist 

only as surface phases or are embedded as separate grains in the underlying film and in 

regions that are either Cu- or Sn-rich.  Films grown at the lower temperature show a 

compositionally-dependent change in Cu and Sn site occupancy, evidenced by a change in 

the volume fractions of the CTS polymorphs: cubic-CTS dominates in the Cu-rich 

(Cu/Sn>2) region while tetragonal-CTS dominates in the Sn-rich (Cu/Sn<2) region.  For 

CZTS films grown at 470 °C, CTS is not observed, although regions grown with excess Sn 

flux show more crystalline disorder despite stoichiometric incorporation of Sn.  In contrast, 

areas with high Zn flux show no significant change in crystalline quality.  Based on our 

results, we suggest growing CZTS films Cu-rich results in higher cation ordering and fewer 

Sn-related antisite defects.   

 

Future Work 

This work emphasizes the unknown effects of excess Sn flux on the overall defect 

equilibria within CZTS films.  Films are typically grown at >500 °C with excess Sn flux 

to avoid Sn loss from SnS evaporation.  This excess Sn flux has been assumed until now 

to have no deleterious effect since the Sn incorporated into the film is stoichiometrically 

self-limiting [2] within the resolution of standard compositional analysis methods.  

However, observed quenched PL and increased crystalline disorder in the regions of the 

film that were stoichiometric but grown under excess Sn flux indicate more needs to be 

understood about the relationship between growth conditions and native defect  
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concentrations.  Some defects at the parts-per-billion level (1013-1015 /cm3) can control the 

minority carrier lifetime by acting as recombination centers.   

It is obvious increasing Cu overpressure should promote higher concentrations of 

CuZn and CuSn antisites, and Sn loss from the film will result in more VSn defects.  It is also 

expected that when films are annealed under conditions that allow Sn to escape, even in 

very small amounts, due to insufficient overpressure of Sn or SnS, VSn defects may form 

in the 2b Wycoff sites [3]–[7] (Figure 4.11).  What is not as easily understood, however, is 

the effect of excess Sn flux on the overall defect equilibria.  In a steady-state situation with 

excess Sn flux, the VSn formation energy is high [8], and high concentrations of this defect 

are not expected.  However, the Cu (and possibly Zn) atoms in the planes ¼- or ¾-way 

along the c-axis containing 2c and 2d sites are highly mobile and may occupy a Sn site.   

This creates a CuSn or ZnSn antisite plus a VCu or VZn, which is lower in energy for the 

CZTS crystal.  Therefore, in the regions of excess Sn flux in the combinatorial samples, 

the excess Sn flux discourages VSn formation, rather, it may promote a different balance of 

SnCu and CuSn antisite occupancy.  Consequently, the Cu/Sn consideration is different for 

the combinatorial samples than the case in which Sn is allowed to escape.   

We propose a synchrotron-based resonant x-ray diffraction analysis of different 

regions of combinatorially grown films to determine the site occupancy dependence on 

composition.  In addition, defect spectroscopy measurements could link variations in site 

occupancies with defect energy levels and possibly concentrations. 
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Modeling Cu2ZnSnS4 (CZTS) Solar Cells with  

Kesterite and Stannite Phase Variation 

Summary 

CZTSSe has been observed and predicted by theory to exhibit Cu and Zn site 

occupancy variations which can be understood as a continuous transformation between 

kesterite and stannite polymorphs.  This is also suspected to be a major cause of the larger 

band tailing observed for CZTSSe compared to CIGSe [9]–[12].  The kesterite/stannite 

transformation is believed to be accompanied by changes in bandgap and band alignments.  

This study examines the effects of CZTS polymorphism and inhomogeneous distributions 

of CZTS polymorphs on device characteristics under scenarios of single phase films, a 

sinusoidal variation between kesterite and stannite with depth, and single phase films with 

thin layers of the other polymorph at both interfaces.  One-dimensional solar cell devices 

consisting of a standard Al/ZnO:Al/i-ZnO/CdS/CZTS/Mo multilayer stack were simulated 

using the solar cell capacitance simulator (SCAPS) software, a program developed 

specifically for modeling thin film polycrystalline devices [13]–[18].   

In general, stannite-only devices were calculated to have higher efficiency than 

kesterite-only devices due to a lower bandgap and thus more light absorption leading to 

higher Jsc.  The sinusoidally-graded models’ device efficiencies fall between those of the 

single phase models.  However, the device performance is relatively insensitive to the 

wavelength of the sinusoidal grading, but is extremely sensitive to the phase present at the 

CdS interface.  The presence of kesterite at the interface and stannite in the bulk induces a 

higher open circuit voltage (VOC), short circuit current density, fill factor, and efficiency.  

The gains in efficiency and JSC for kesterite as opposed to stannite at the interface mainly 
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arise from increasing the diode activation energy or interface bandgap, which is merely the 

CZTS band gap in the models with a Type 1 straddling alignment with CdS.  These results 

suggest a route for engineering device band profiles using the band alignment using 

polytype control.  In addition to effects at the CdS interface, controlling the polytype (or 

polytype alloy – meaning a disordered mixture of Cu and Zn site occupancy) at the buffer 

interface could be used to engineer the cliff /spike alignment and at the Mo interface to 

adjust the Schottky barrier height and/or create a minority carrier reflector. 

 

Future Work 

The SCAPS models used to investigate the polymorphism within CZTS only 

explore one type of recombination: band to band recombination.  A more sophisticated and 

realistic model containing CZTSxSe1-x (0<x<1), interface and bulk defects, band bending 

at the back interface, intraband tunneling, and tunneling from bands to interface defects are 

all of interest in the complicated effects of Cu-Zn cation disorder.  Since this work was 

published, an updated computation of the change in VBM and CBM of CZTS and CZTSe 

with the self-compensating defect pair [CuZn + ZnCu] show not only a change in the CBM, 

as presented in the present research, but a change in the VBM also [8].  Incorporating this 

new knowledge in the SCAPS model would also more accurately reflect the effect of 

polymorphism on overall device performance.   

A method to employ bandgap engineering by selecting for a particular polymorph 

in the bulk vs. the interface of the absorber layer is presented by another computational 

project completed within the Scarpulla research group.  Junyi Zhu et al. [19] predicted that 

defect population tuning can be achieved through induced compressive or tensile strain to 

the CZTS lattice.  For example, CuZn antisites form preferentially to VCu under tensile 
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stress, while the shallower VCu acceptor is preferred for 2-3% compressive strain.  If it is 

possible to form the compensating ZnCu antisite as well in tensile strain, it may be possible 

to engineer the bandgap to achieve the gained efficiencies by selecting for the higher 

Eg=1.56 eV kesterite at the CZTS/CdS interface to lower the radiative recombination 

activation energy at the interface, and also exploit the higher absorption advantage of the 

lower Eg=1.42 eV for stannite within the bulk of the material.  The associated effects on 

doping would also be important to examine.  An experiment which uses surface-active 

agents that can modify the chemomechanical stress [20] of the CZTS would be interesting 

to determine if CZTS can be bandgap engineered using polymorph manipulation.   
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